Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8006): 145-153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538785

RESUMO

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Assuntos
Região CA1 Hipocampal , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Inflamação , Memória , Receptor Toll-Like 9 , Animais , Feminino , Masculino , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Região CA1 Hipocampal/fisiologia , Centrossomo/metabolismo , Disfunção Cognitiva/genética , Condicionamento Clássico , Matriz Extracelular/metabolismo , Medo , Instabilidade Genômica/genética , Histonas/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Memória/fisiologia , Transtornos Mentais/genética , Doenças Neurodegenerativas/genética , Doenças Neuroinflamatórias/genética , Neurônios/metabolismo , Neurônios/patologia , Membrana Nuclear/patologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo
2.
J Neurovirol ; 30(1): 1-21, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280928

RESUMO

Opioid overdose deaths have dramatically increased by 781% from 1999 to 2021. In the setting of HIV, opioid drug abuse exacerbates neurotoxic effects of HIV in the brain, as opioids enhance viral replication, promote neuronal dysfunction and injury, and dysregulate an already compromised inflammatory response. Despite the rise in fentanyl abuse and the close association between opioid abuse and HIV infection, the interactive comorbidity between fentanyl abuse and HIV has yet to be examined in vivo. The HIV-1 Tat-transgenic mouse model was used to understand the interactive effects between fentanyl and HIV. Tat is an essential protein produced during HIV that drives the transcription of new virions and exerts neurotoxic effects within the brain. The Tat-transgenic mouse model uses a glial fibrillary acidic protein (GFAP)-driven tetracycline promoter which limits Tat production to the brain and this model is well used for examining mechanisms related to neuroHIV. After 7 days of fentanyl exposure, brains were harvested. Tight junction proteins, the vascular cell adhesion molecule, and platelet-derived growth factor receptor-ß were measured to examine the integrity of the blood brain barrier. The immune response was assessed using a mouse-specific multiplex chemokine assay. For the first time in vivo, we demonstrate that fentanyl by itself can severely disrupt the blood-brain barrier and dysregulate the immune response. In addition, we reveal associations between inflammatory markers and tight junction proteins at the blood-brain barrier.


Assuntos
Barreira Hematoencefálica , Fentanila , HIV-1 , Camundongos Transgênicos , Doenças Neuroinflamatórias , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Camundongos , Fentanila/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/virologia , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/patologia , Infecções por HIV/tratamento farmacológico , Modelos Animais de Doenças , Analgésicos Opioides/farmacologia , Analgésicos Opioides/efeitos adversos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Humanos , Encéfalo/efeitos dos fármacos , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/patologia , Transtornos Relacionados ao Uso de Opioides/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255938

RESUMO

Both early childhood traumatic experiences and current stress increase the risk of suicidal behaviour, in which immune activation might play a role. Previous research suggests an association between mood disorders and P2RX7 gene encoding P2X7 receptors, which stimulate neuroinflammation. We investigated the effect of P2RX7 variation in interaction with early childhood adversities and traumas and recent stressors on lifetime suicide attempts and current suicide risk markers. Overall, 1644 participants completed questionnaires assessing childhood adversities, recent negative life events, and provided information about previous suicide attempts and current suicide risk-related markers, including thoughts of ending their life, death, and hopelessness. Subjects were genotyped for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into logistic and linear regression models, followed by a clumping procedure to identify clumps of SNPs with a significant main and interaction effect. We identified two significant clumps with a main effect on current suicidal ideation with top SNPs rs641940 and rs1653613. In interaction with childhood trauma, we identified a clump with top SNP psy_rs11615992 and another clump on hopelessness containing rs78473339 as index SNP. Our results suggest that P2RX7 variation may mediate the effect of early childhood adversities and traumas on later emergence of suicide risk.


Assuntos
Experiências Adversas da Infância , Doenças Neuroinflamatórias , Receptores Purinérgicos P2X7 , Pré-Escolar , Humanos , Afeto , Genótipo , Doenças Neuroinflamatórias/genética , Receptores Purinérgicos P2X7/genética , Ideação Suicida
5.
Sci Rep ; 13(1): 14288, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652931

RESUMO

This study is performed to explore the role of P2X4 in intracerebral hemorrhage (ICH) and the association between P2X4 and the NLRP1/Caspase-1 pathway. The mouse ICH model was established via collagenase injection into the right basal ganglia. P2X4 expression in brain tissues was knocked down via intracerebroventricular injection with adeno-associated virus (AAV) harboring shRNA against shP2X4. The gene expression of P2X4 and protein levels related to NLRP1 inflammasome were detected using qRT-PCR and Western blot analysis, respectively. Muramyl dipeptide (an activator of NLRP1) was used to activate NLRP1 in brain tissues. ICH induced high expression of P2X4 in mouse brain tissues. The knockdown of P2X4 alleviated short- and long-term neurological deficits of ICH mice, as well as inhibited the tissue expression and serum levels of pro-inflammatory cytokines, including TNF-α, interleukin (IL)-6, and IL-1ß. Additionally, the expressions of NLRP1, ASC, and pro-Caspase-1 were down-regulated upon P2X4 silencing. Moreover, neurological impairment and the expression and secretion of cytokines after P2X4 silencing were aggravated by the additional administration of MDP. P2X4 knockdown represses neuroinflammation in brain tissues after ICH. Mechanistically, P2X4 inhibition exerts a neuroprotective effect in ICH by blocking the NLRP1/Caspase-1 pathway.


Assuntos
Doenças Neuroinflamatórias , Receptores Purinérgicos P2X4 , Fator de Necrose Tumoral alfa , Animais , Camundongos , Caspase 1/genética , Hemorragia Cerebral/complicações , Hemorragia Cerebral/genética , Citocinas , Modelos Animais de Doenças , Interleucina-6 , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
6.
Biomolecules ; 13(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371506

RESUMO

This Review emphasizes the impact of APOE4-the most significant genetic risk factor for Alzheimer's disease (AD)-on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles' effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden-as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs-in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aß42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer's Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aß42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer's Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported.


Assuntos
Poluição do Ar , Doença de Alzheimer , Apolipoproteína E4 , Material Particulado , Suicídio , Humanos , Poluição do Ar/efeitos adversos , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Encéfalo/patologia , Cidades/epidemiologia , Interação Gene-Ambiente , Heterozigoto , México/epidemiologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/genética , Material Particulado/efeitos adversos , Suicídio/estatística & dados numéricos
7.
Sci Rep ; 13(1): 7757, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173368

RESUMO

Emotional stress is a leading risk factor in the development of neuropsychiatric disorders possibly via immune activation. P2X7 receptors promote neuroinflammation, and research suggests a relationship between chromosome region 12q2431, in which the P2X7R gene is located, and development of mood disorders, however, few studies concentrate on its association with anxiety. Our aim was to investigate the effects of P2RX7 variation in interaction with early childhood traumas and recent stressors on anxiety. 1752 participants completed questionnaires assessing childhood adversities and recent negative life events, provided data on anxiety using the Brief Symptom Inventory, and were genotyped for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into linear regression models followed by a linkage disequilibrium-based clumping procedure to identify clumps of SNPs with a significant main or interaction effect. We identified a significant clump with top SNP rs67881993 and containing a set of 29SNPs that are in high LD, which significantly interacted with early childhood traumas but not with recent stress conveying a protective effect against increased anxiety in those exposed to early adversities. Our study demonstrated that P2RX7 variants interact with distal and more etiological stressors in influencing the severity of anxiety symptoms, supporting previous scarce results and demonstrating its role in moderating the effects of stress.


Assuntos
Experiências Adversas da Infância , Ansiedade , Doenças Neuroinflamatórias , Receptores Purinérgicos P2X7 , Pré-Escolar , Humanos , Ansiedade/genética , Genótipo , Doenças Neuroinflamatórias/genética , Polimorfismo de Nucleotídeo Único , Receptores Purinérgicos P2X7/genética
8.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835494

RESUMO

Translocase of outer mitochondrial membrane 40 (TOMM40) is located in the outer membrane of mitochondria. TOMM40 is essential for protein import into mitochondria. TOMM40 genetic variants are believed to increase the risk of Alzheimer's disease (AD) in different populations. In this study, three exonic variants (rs772262361, rs157581, and rs11556505) and three intronic variants (rs157582, rs184017, and rs2075650) of the TOMM40 gene were identified from Taiwanese AD patients using next-generation sequencing. Associations between the three TOMM40 exonic variants and AD susceptibility were further evaluated in another AD cohort. Our results showed that rs157581 (c.339T > C, p.Phe113Leu, F113L) and rs11556505 (c.393C > T, p.Phe131Leu, F131L) were associated with an increased risk of AD. We further utilized cell models to examine the role of TOMM40 variation in mitochondrial dysfunction that causes microglial activation and neuroinflammation. When expressed in BV2 microglial cells, the AD-associated mutant (F113L) or (F131L) TOMM40 induced mitochondrial dysfunction and oxidative stress-induced activation of microglia and NLRP3 inflammasome. Pro-inflammatory TNF-α, IL-1ß, and IL-6 released by mutant (F113L) or (F131L) TOMM40-activated BV2 microglial cells caused cell death of hippocampal neurons. Taiwanese AD patients carrying TOMM40 missense (F113L) or (F131L) variants displayed an increased plasma level of inflammatory cytokines IL-6, IL-18, IL-33, and COX-2. Our results provide evidence that TOMM40 exonic variants, including rs157581 (F113L) and rs11556505 (F131L), increase the AD risk of the Taiwanese population. Further studies suggest that AD-associated mutant (F113L) or (F131L) TOMM40 cause the neurotoxicity of hippocampal neurons by inducing the activation of microglia and NLRP3 inflammasome and the release of pro-inflammatory cytokines.


Assuntos
Doença de Alzheimer , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Doenças Neuroinflamatórias , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Inflamassomos/metabolismo , Interleucina-6/metabolismo , Microglia/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Doenças Neuroinflamatórias/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Variação Genética
9.
Science ; 379(6627): 45-62, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603072

RESUMO

Age-related macular degeneration is a prevalent neuroinflammatory condition and a major cause of blindness driven by genetic and environmental factors such as obesity. In diseases of aging, modifiable factors can be compounded over the life span. We report that diet-induced obesity earlier in life triggers persistent reprogramming of the innate immune system, lasting long after normalization of metabolic abnormalities. Stearic acid, acting through Toll-like receptor 4 (TLR4), is sufficient to remodel chromatin landscapes and selectively enhance accessibility at binding sites for activator protein-1 (AP-1). Myeloid cells show less oxidative phosphorylation and shift to glycolysis, ultimately leading to proinflammatory cytokine transcription, aggravation of pathological retinal angiogenesis, and neuronal degeneration associated with loss of visual function. Thus, a past history of obesity reprograms mononuclear phagocytes and predisposes to neuroinflammation.


Assuntos
Memória Epigenética , Imunidade Inata , Degeneração Macular , Doenças Neuroinflamatórias , Obesidade , Animais , Camundongos , Citocinas/genética , Imunidade Inata/genética , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Obesidade/genética , Fagócitos/imunologia , Transcrição Gênica , Degeneração Macular/genética , Degeneração Macular/imunologia , Reprogramação Celular/genética , Receptor 4 Toll-Like/genética
10.
Science ; 379(6628): eadd1236, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36634180

RESUMO

Tau-mediated neurodegeneration is a hallmark of Alzheimer's disease. Primary tauopathies are characterized by pathological tau accumulation and neuronal and synaptic loss. Apolipoprotein E (ApoE)-mediated neuroinflammation is involved in the progression of tau-mediated neurodegeneration, and emerging evidence suggests that the gut microbiota regulates neuroinflammation in an APOE genotype-dependent manner. However, evidence of a causal link between the microbiota and tau-mediated neurodegeneration is lacking. In this study, we characterized a genetically engineered mouse model of tauopathy expressing human ApoE isoforms reared under germ-free conditions or after perturbation of their gut microbiota with antibiotics. Both of these manipulations reduced gliosis, tau pathology, and neurodegeneration in a sex- and ApoE isoform-dependent manner. The findings reveal mechanistic and translationally relevant interrelationships between the microbiota, neuroinflammation, and tau-mediated neurodegeneration.


Assuntos
Apolipoproteínas E , Microbioma Gastrointestinal , Doenças Neuroinflamatórias , Tauopatias , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Camundongos Transgênicos , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/microbiologia , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/microbiologia , Fatores Sexuais
12.
Mol Pharmacol ; 103(3): 113-131, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36456192

RESUMO

Spatio-temporal specific long noncoding RNAs (lncRNAs) play important regulatory roles not only in the growth and development of the brain but also in the occurrence and development of neurologic diseases. Generally, the occurrence of neurologic diseases is accompanied by neuroinflammation. Elucidation of the regulatory mechanisms of lncRNAs on neuroinflammation is helpful for the clinical treatment of neurologic diseases. This paper focuses on recent findings on the regulatory effect of lncRNAs on neuroinflammatory diseases and selects 10 lncRNAs that have been intensively studied to analyze their mechanism action. The clinical treatment status of lncRNAs as drug targets is also reviewed. SIGNIFICANCE STATEMENT: Gene therapies such as clustered regularly interspaced short palindrome repeats technology, antisense RNA technology, and RNAi technology are gradually applied in clinical treatment, and the development of technology is based on a large number of basic research investigations. This paper focuses on the mechanisms of lncRNAs regulation of neuroinflammation, elucidates the beneficial or harmful effects of lncRNAs in neurosystemic diseases, and provides theoretical bases for lncRNAs as drug targets.


Assuntos
Doenças Neuroinflamatórias , RNA Longo não Codificante , Humanos , Doenças Neuroinflamatórias/genética , RNA Longo não Codificante/genética
13.
Mol Cells ; 45(12): 950-962, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36572563

RESUMO

Aging is a major risk factor for common neurodegenerative diseases. Although multiple molecular, cellular, structural, and functional changes occur in the brain during aging, the involvement of caveolin-2 (Cav-2) in brain ageing remains unknown. We investigated Cav-2 expression in brains of aged mice and its effects on endothelial cells. The human umbilical vein endothelial cells (HUVECs) showed decreased THP-1 adhesion and infiltration when treated with Cav-2 siRNA compared to control siRNA. In contrast, Cav-2 overexpression increased THP-1 adhesion and infiltration in HUVECs. Increased expression of Cav-2 and iba-1 was observed in brains of old mice. Moreover, there were fewer iba-1-positive cells in the brains of aged Cav-2 knockout (KO) mice than of wild-type aged mice. The levels of several chemokines were higher in brains of aged wild-type mice than in young wild-type mice; moreover, chemokine levels were significantly lower in brains of young mice as well as aged Cav-2 KO mice than in their wild-type counterparts. Expression of PECAM1 and VE-cadherin proteins increased in brains of old wild-type mice but was barely detected in brains of young wild-type and Cav-2 KO mice. Collectively, our results suggest that Cav-2 expression increases in the endothelial cells of aged brain, and promotes leukocyte infiltration and age-associated neuroinflammation.


Assuntos
Envelhecimento , Caveolina 2 , Doenças Neuroinflamatórias , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Caveolina 2/genética , Caveolina 2/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Knockout , Doenças Neuroinflamatórias/genética , RNA Interferente Pequeno/metabolismo , Envelhecimento/patologia
14.
Sci Rep ; 12(1): 22099, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543864

RESUMO

Current scientific research is driven by the ability to manipulate gene expression by utilizing the Cre/loxP system in transgenic mouse models. However, artifacts in Cre-driver mouse lines that introduce undesired effects and confound results are increasingly being reported. Here, we show aberrant neuroinflammation and synaptic changes in two widely used Cre-driver mouse models. Neuroinflammation in CaMKIIα-iCre mice was characterized by the activation and proliferation of microglia and astrocytes in synaptic layers of the hippocampus. Increased GFAP and Iba1 levels were observed in hippocampal brain regions of 4-, 8- and 22-month-old CaMKIIα-iCre mice compared to WT littermates. Synaptic changes in NMDAR, AMPAR, PSD95 and phosphorylated CaMKIIα became apparent in 8-month-old CaMKIIα-iCre mice but were not observed in 4-month-old CaMKIIα-iCre mice. Synaptophysin and synaptoporin were unchanged in CaMKIIα-iCre compared to WT mice, suggesting that synaptic alterations may occur in excitatory postsynaptic regions in which iCre is predominantly expressed. Finally, hippocampal volume was reduced in 22-month-old CaMKIIα-iCre mice compared to WT mice. We tested the brains of mice of additional common Cre-driver mouse models for neuroinflammation; the nestin-Cre mouse model showed synaptic changes and astrocytosis marked by increased GFAP+ astrocytes in cortical and hippocampal regions, while the original CaMKIIα-Cre T29-1 strain was comparable to WT mice. The mechanisms underlying abnormal neuroinflammation in nestin-Cre and CaMKIIα-iCre are unknown but may be associated with high levels of Cre expression. Our findings are critical to the scientific community and demonstrate that the correct Cre-driver controls must be included in all studies using these mice.


Assuntos
Modelos Animais de Doenças , Engenharia Genética , Integrases , Doenças Neuroinflamatórias , Animais , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Integrases/metabolismo , Camundongos Transgênicos/genética , Nestina/genética , Nestina/metabolismo , Neuroglia/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Sinapses/metabolismo , Engenharia Genética/métodos
15.
Int Immunopharmacol ; 113(Pt A): 109375, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461592

RESUMO

BACKGROUND: Recent studies have uncovered that hyperuricemia (HUA) leads to cognitive deficits, which are accompanied by neuronal damage and neuroinflammation. Here, we aim to explore the role of methyltransferase-like 3 (METTL3) in HUA-mediated neuronal apoptosis and microglial inflammation. METHODS: A HUA mouse model was constructed. The spatial memory ability of the mice was assessed by the Morris water maze experiment (MWM), and neuronal apoptosis was analyzed by the TdT-mediated dUTP nick end labeling (TUNEL) assay. Besides, enzyme-linked immunosorbent assay (ELISA) was utilized to measure the contents of inflammatory factors (IL-1ß, IL-6, and TNF-α) and oxidative stress markers (MDA, SOD, and CAT) in the serum of mice. In vitro, the mouse hippocampal neuron (HT22) and microglia (BV2) were treated with uric acid (UA). Flow cytometry was applied to analyze HT22 and BV2 cell apoptosis, and ELISA was conducted to observe neuroinflammation and oxidative stress. In addition, the expression of MyD88, p-NF-κB, NF-κB, NLRP3, ASC and Caspase1 was determined by Western blot. RESULTS: METTL3 and miR-124-3p were down-regulated, while the MyD88-NF-κB pathway was activated in the HUA mouse model. UA treatment induced neuronal apoptosis in HT22 and stimulated microglial activation in BV2. Overexpressing METTL3 alleviated HT22 neuronal apoptosis and resisted the release of inflammatory cytokines and oxidative stress mediators in BV2 cells. METTL3 repressed MyD88-NF-κB and NLRP3-ASC-Caspase1 inflammasome. In addition, METTL3 overexpression enhanced miR-124-3p expression, while METTL3 knockdown aggravated HT22 cell apoptosis and BV2 cell overactivation. CONCLUSION: METTL3 improves neuronal apoptosis and microglial activation in the HUA model by choking the MyD88/NF-κB pathway and up-regulating miR-124-3p.


Assuntos
Disfunção Cognitiva , Hiperuricemia , Inflamassomos , Metiltransferases , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Caspase 1/genética , Caspase 1/imunologia , Células Cultivadas , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/imunologia , Modelos Animais de Doenças , Hiperuricemia/complicações , Hiperuricemia/genética , Hiperuricemia/imunologia , Inflamassomos/genética , Inflamassomos/imunologia , Metiltransferases/genética , Metiltransferases/imunologia , MicroRNAs/genética , MicroRNAs/imunologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/imunologia , Sistema Nervoso/fisiopatologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , NF-kappa B , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Ácido Úrico/administração & dosagem , Ácido Úrico/efeitos adversos , Ácido Úrico/farmacologia
16.
J Neuroinflammation ; 19(1): 289, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463233

RESUMO

BACKGROUND: Neuroinflammation is one of the most important processes in secondary injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 2 (TREM2) has been proven to exert neuroprotective effects in neurodegenerative diseases and stroke by modulating neuroinflammation, and promoting phagocytosis and cell survival. However, the role of TREM2 in TBI has not yet been elucidated. In this study, we are the first to use COG1410, an agonist of TREM2, to assess the effects of TREM2 activation in a murine TBI model. METHODS: Adult male wild-type (WT) C57BL/6 mice and adult male TREM2 KO mice were subjected to different treatments. TBI was established by the controlled cortical impact (CCI) method. COG1410 was delivered 1 h after CCI via tail vein injection. Western blot analysis, immunofluorescence, laser speckle contrast imaging (LSCI), neurological behaviour tests, brain electrophysiological monitoring, Evans blue assays, magnetic resonance imaging (MRI), and brain water content measurement were performed in this study. RESULTS: The expression of endogenous TREM2 peaked at 3 d after CCI, and it was mainly expressed on microglia and neurons. We found that COG1410 improved neurological functions within 3 d, as well as neurological functions and brain electrophysiological activity at 2 weeks after CCI. COG1410 exerted neuroprotective effects by inhibiting neutrophil infiltration and microglial activation, and suppressing neuroinflammation after CCI. In addition, COG1410 treatment alleviated blood brain barrier (BBB) disruption and brain oedema; furthermore, COG1410 promoted cerebral blood flow (CBF) recovery at traumatic injury sites after CCI. In addition, COG1410 suppressed neural apoptosis at 3 d after CCI. TREM2 activation upregulated p-Akt, p-CREB, BDNF, and Bcl-2 and suppressed TNF-α, IL-1ß, Bax, and cleaved caspase-3 at 3 d after CCI. Moreover, TREM2 knockout abolished the effects of COG1410 on vascular phenotypes and microglial states. Finally, the neuroprotective effects of COG1410 were suppressed by TREM2 depletion. CONCLUSIONS: Altogether, we are the first to demonstrate that TREM2 activation by COG1410 alleviated neural damage through activation of Akt/CREB/BDNF signalling axis in microglia after CCI. Finally, COG1410 treatment improved neurological behaviour and brain electrophysiological activity after CCI.


Assuntos
Lesões Encefálicas Traumáticas , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/imunologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/imunologia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores Imunológicos/agonistas , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Modelos Animais de Doenças , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/imunologia
17.
Cells ; 11(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291123

RESUMO

HIV-1 mediated neurotoxicity is thought to be associated with HIV-1 viral proteins activating astrocytes and microglia by inducing inflammatory cytokines leading to the development of HIV-associated neurocognitive disorder (HAND). In the current study, we observe how HIV-1 Nef upregulates the levels of IL-6, IP-10, and TNF-α around 6.0fold in normal human astrocytes (NHAs) compared to cell and empty vector controls. Moderate downregulation in the expression profile of inflammatory cytokines was observed due to RNA interference. Furthermore, we determine the impact of inflammatory cytokines in the upregulation of kynurenine pathway metabolites, such as indoleamine 2,3-dioxygenase (IDO), and 3-hydroxyanthranilic acid oxygenase (HAAO) in NHA, and found the same to be 3.0- and 3.2-fold, respectively. Additionally, the variation in the level of nitric oxide before and after RNA interference was significant. The upregulated cytokines and pathway-specific metabolites could be linked with the neurotoxic potential of HIV-1 Nef. Thus, the downregulation in cytokines and kynurenine metabolites observed after siRNA-Nef interference indicates the possibility of combining the RNA interference approach with current antiretroviral therapy to prevent neurotoxicity development.


Assuntos
Astrócitos , Infecções por HIV , HIV-1 , Doenças Neuroinflamatórias , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Humanos , 3-Hidroxiantranilato 3,4-Dioxigenase/genética , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Astrócitos/metabolismo , Astrócitos/virologia , Quimiocina CXCL10/metabolismo , Citocinas/metabolismo , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-6/metabolismo , Cinurenina/metabolismo , Óxido Nítrico/metabolismo , RNA Interferente Pequeno/metabolismo , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/virologia , Perfilação da Expressão Gênica , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
18.
Elife ; 112022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36314770

RESUMO

Stimulator of interferon genes (STING) is activated after detection of cytoplasmic dsDNA by cGAS (cyclic GMP-AMP synthase) as part of the innate immunity defence against viral pathogens. STING binds TANK-binding kinase 1 (TBK1). TBK1 mutations are associated with familial amyotrophic lateral sclerosis, and the STING pathway has been implicated in the pathogenesis of further neurodegenerative diseases. To test whether STING activation is sufficient to induce neurodegeneration, we analysed a mouse model that expresses the constitutively active STING variant N153S. In this model, we focused on dopaminergic neurons, which are particularly sensitive to stress and represent a circumscribed population that can be precisely quantified. In adult mice expressing N153S STING, the number of dopaminergic neurons was smaller than in controls, as was the density of dopaminergic axon terminals and the concentration of dopamine in the striatum. We also observed alpha-synuclein pathology and a lower density of synaptic puncta. Neuroinflammation was quantified by staining astroglia and microglia, by measuring mRNAs, proteins and nuclear translocation of transcription factors. These neuroinflammatory markers were already elevated in juvenile mice although at this age the number of dopaminergic neurons was still unaffected, thus preceding the degeneration of dopaminergic neurons. More neuroinflammatory markers were blunted in mice deficient for inflammasomes than in mice deficient for signalling by type I interferons. Neurodegeneration, however, was blunted in both mice. Collectively, these findings demonstrate that chronic activation of the STING pathway is sufficient to cause degeneration of dopaminergic neurons. Targeting the STING pathway could therefore be beneficial in Parkinson's disease and further neurodegenerative diseases.


Neurodegenerative conditions such as Alzheimer's and Parkinson's diseases are characterised by neurons getting damaged and dying. Many factors contribute to this process, but few can be effectively controlled by therapies. Interestingly, previous studies have highlighted that inflammation, a process normally triggered by foreign agents or biological damage, is often associated with neurons degenerating. However, it is unclear whether these responses are the cause or the consequence of brain cell damage. In injured neurons, the genetic information normally contained inside a dedicated cellular compartment can start to leak into the surrounding parts of the cell. This damage triggers an inflammatory response through the STING pathway, a mechanism previously implicated in the onset of Parkinson's disease. In these patients, the neurons that produce the signalling molecule dopamine start to die, leading to difficulty with movement. Whether STING can directly cause this neuronal loss remains unknown. To answer this question, Szegö, Malz et al. genetically engineered mice in which the STING pathway is permanently activated. The animals had fewer dopamine-producing neurons and accumulated harmful clumps of proteins; both these biological features are characteristic signs of Parkinson's disease. Crucially, signs of inflammation were present before neurons started to show damage, suggesting that inflammatory responses could cause neurodegeneration. Further experiments revealed that STING triggers several molecular cascades; blocking one only of these pathways did not keep the neurons healthy. Neurodegenerative diseases are a growing concern around the world. The results from Szegö, Malz et al. suggest that preventing prolonged inflammatory may reduce the risk of neurodegeneration. If further research confirms these findings, in particular in humans, well-known treatments against inflammation could potentially become relevant to fight these conditions.


Assuntos
Neurônios Dopaminérgicos , Doenças Neuroinflamatórias , Animais , Camundongos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Microglia/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Doença de Parkinson/genética
19.
Front Immunol ; 13: 964138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091018

RESUMO

Macrophages and microglia play important roles in chronic neuroinflammation following spinal cord injury (SCI). Although macrophages and microglia have similar functions, their phagocytic and homeostatic abilities differ. It is difficult to distinguish between these two populations in vivo, but single-cell analysis can improve our understanding of their identity and heterogeneity. We conducted bioinformatics analysis of the single-cell RNA sequencing dataset GSE159638, identifying apolipoprotein E (APOE) as a hub gene in both macrophages and microglia in the subacute and chronic phases of SCI. We then validated these transcriptomic changes in a mouse model of cervical spinal cord hemi-contusion and observed myelin uptake, lipid droplets, and lysosome accumulation in macrophages and microglia following SCI. Finally, we observed that knocking out APOE aggravated neurological dysfunction, increased neuroinflammation, and exacerbated the loss of white matter. Targeting APOE and the related cholesterol efflux represents a promising strategy for reducing neuroinflammation and promoting recovery following SCI.


Assuntos
Apolipoproteínas E , Macrófagos , Microglia , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/imunologia , Biologia Computacional , Macrófagos/imunologia , Camundongos , Microglia/imunologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...